Certifying solutions to square systems of polynomial-exponential equations
نویسندگان
چکیده
Smale’s α-theory certifies that Newton iterations will converge quadratically to a solution of a square system of analytic functions based on the Newton residual and all higher order derivatives at the given point. Shub and Smale presented a bound for the higher order derivatives of a system of polynomial equations based in part on the degrees of the equations. For a given system of polynomial-exponential equations, we consider a related system of polynomial-exponential equations and provide a bound on the higher order derivatives of this related system. This bound yields a complete algorithm for certifying solutions to polynomial-exponential systems, which is implemented in alphaCertified. Examples are presented to demonstrate this certification algorithm.
منابع مشابه
Algorithm Xxx: Alphacertified: Certifying Solutions to Polynomial Systems
Smale’s α-theory uses estimates related to the convergence of Newton’s method to certify that Newton iterations will converge quadratically to solutions to a square polynomial system. The program alphaCertified implements algorithms based on α-theory to certify solutions of polynomial systems using both exact rational arithmetic and arbitrary precision floating point arithmetic. It also impleme...
متن کاملalphaCertified: certifying solutions to polynomial systems
Smale’s α-theory uses estimates related to the convergence of Newton’s method to certify that Newton iterations will converge quadratically to solutions to a square polynomial system. The program alphaCertified implements algorithms based on α-theory to certify solutions of polynomial systems using both exact rational arithmetic and arbitrary precision floating point arithmetic. It also impleme...
متن کاملConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملNumerical solution for the risk of transmission of some novel coronavirus (2019-nCov) models by the Newton-Taylor polynomial solutions
In this paper we consider two type of mathematical models for the novel coronavirus (2019-nCov), which are in the form of a nonlinear differential equations system. In the first model the contact rate, , and transition rate of symptomatic infected indeviduals to the quarantined infected class, , are constant. And in the second model these quantities are time dependent. These models are the...
متن کامل